杰克兔计划

In April, 2010, The Transportation Security Administration (TSA) of the Department of Homeland Security (DHS) collaborated with the Chemical Security Analysis Center (CSAC) and sponsored a series of 1 & 2 ton atmospheric releases of Toxic Inhalation Hazard (TIH) materials, specifically Chlorine and Ammonia in the Utah desert at Dugway Proving Ground. These tests were conducted in order to determine the Nation's vulnerability to TIH's in transport near sensitive populations and areas.

In both 2015 and 2016, Subject Matter Experts (SME) in hazardous materials emergency response designed and conducted experiments at Dugway during the Department of Homeland Security’s (DHS) research on catastrophic releases of chlorine named the “杰克兔 Program”. 紧急 Response SME’s worked collaboratively with project scientists to assure meaningful outcomes during releases of 7 to 20 tons of chlorine. The overall objective for the SME’s was to answer questions for the emergency planning and response community regarding planning for, tactical and operational considerations of, and public protection actions during a catastrophic chlorine release or a release of any other TIH material in any jurisdiction.

In August of 2017 key contributors to the 杰克兔 (JR) Project, environmental systems researchers, plume modelers, Hazmat SME’s, and atmospheric scientists were invited to 犹他谷大学 (UVU) to formulate conclusions based on the JR data. The Final Report - The 杰克兔1I Project’s Impacts on 紧急 Responders includes the outcomes that should be used for training and educating the nation’s emergency responders and planners.

In the coming years 2022 – 2025, the UVU Team of SME’s will again be involved in the 杰克兔III计划. JR III will focus on planning, protection, and response to large scale releases of Ammonia, similar to the earlier experiments involving Chlorine. We look forward to providing the nation’s emergency preparedness community with important outcomes from the program. 


杰克兔计划

犹他谷大学
紧急服务
Email: [email protected]

杰克兔1

画廊
额外的资源

杰克兔II 2015

画廊
视频
video play button
REL 2:车辆在100米向北的曝光度为50000ppm
video play button
REL 2:消防队员在发动机顶部,海拔100米,海拔50 ppm,向东看
video play button
REL 2:车辆在向东100米处的曝光度为50000ppm
video play button
REL 2:消防员在发动机顶部,海拔100米,海拔50百万分之高,向北看
video play button
REL 3:车辆在100米向北的曝光度为50000ppm
video play button
REL 3:障碍物之间的羽流行为-向南视图1
video play button
REL 3:障碍物之间的羽流行为-朝南视图2
video play button
REL 3:障碍物之间的羽流行为-向南视图3
video play button
REL 4:气流对障碍物的行为——向东看
video play button
REL 4:逆行蠕变羽流行为-在60米的东北方向
video play button
rel5:雷克萨斯发动机在15M > 200,000 ppm释放后的噪音
video play button
rel5:雷克萨斯发动机释放前的噪音
video play button
REL 5:紧急响应释放概述在15M > 200,000 ppm
video play button
REL 5:逆行蠕变-消防员暴露在100米94 ppm的机头水平
video play button
REL 5: 15M > 200,000 ppm的应急响应引擎
video play button
REL 5:应急响应车辆在15M > 200,000 ppm
video play button
REL 5:证人委员会10号- 15M处液氯暴露
 
额外的资源

杰克兔II 2016

画廊
视频
play button
试验6:1号车(赛百灵)检测数据
play button
试验6:5号车(思域)检测数据
play button
试验6:消防员@ 100 M 0 ppm
play button
试验六:鸟瞰图-羽流向下180度的表现
play button
试验6:在120米处朝消防员方向看
play button
试验7:3号车后面90米处的地面视图
play button
试验7:5号车厢上方90米的地面视图
play button
试验7:3号车(杜兰戈)检测数据
play button
试验7:5号车(思域)检测数据
play button
试验7:消防员@ 100米0 ppm逆行蠕变0米
play button
试验7:从北面90米,海拔4米处观看
play button
试验7:鸟瞰图-向下135度的羽流行为
play button
试验7:视野向西南,海拔80米
play button
试验8:从5号车(思域)后面90米处观看
play button
试验8:5号车(思域)检测数据
play button
试验8:从5号车后面90米处看倾卸阀
play button
试验8:卸阀消防员@ 100米0 ppm逆行蠕变10米
play button
试验8:自卸阀朝南90米@ 4米海拔
play button
试验8:潜在RPT行为的倾卸阀视图
play button
试验8:倾卸阀向西南方向80米处
play button
试验8:卸油阀朝南@ 90米
play button
试验8:消防员@ 100米0 ppm逆行蠕变0米
play button
试验8:从海拔90米@ 4米向南看
play button
试验8:向西南方向,高度80米
play button
试验8:向南看,海拔90米
play button
试验8:鸟瞰图-羽流行为0度向上
play button
试验8:消防员@ 100米0.0 ppm逆行蠕变0米延时
play button
试验九:向西南方向80米20吨
play button
试验9:5号车(思域)检测数据
play button
试验九:向南看,海拔90米
play button
试验9:消防员@ 100米0 ppm逆行蠕变30米
play button
试验9:5号车后面90米处的地面视图
play button
试验9:从海拔4米90米向南眺望
play button
试验9:鸟瞰图-羽流行为180度下降20吨
play button
试验九:从3号车厢90米高的车顶上观看
 
额外的资源

杰克兔分析和报告

画廊
额外的信息

应答器训练

额外的信息